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Abstract

There are numerous optimization tasks involved with 
particle accelerator physics. Fitting twiss parameters, 
maximizing dynamic apertures and reducing the beam’s focal 
spot sizes are but just some of the instances of optimization 
work being carried out in accelerators. On a broader sense, a 
large class of problems in many fields of research can be 
reduced to the issue of finding the smallest value taken on by 
a function of one or more variable parameters. With that in 
mind, this paper will be presenting several techniques which 
can be used to minimize a multivariable function. The 
underlying motivation for doing so lies in its potential 
application to the automated alignment of Kirkpatrick-Baez 
mirrors. Such mirrors are used to focus the X-ray beams 
produced from synchrotron sources and their alignment can 
be thought of as minimizing a function of six variables, two 
for each direction that a mirror can move in. As such, the 
optimization methods being presented can be used to obtain 
the most efficient alignment of the Kirkpatrick-Baez mirrors. 
The main issue that we will have to contend with when 
mapping the alignment of the mirrors into a response function 
is that of noise within the function itself. Thus, the 
optimization techniques will have to be modified to account 
for this. Also, the motors that control the mirrors can only 
move in discrete steps. This means that the solutions obtained 
from the minimization methods may not be implementable. 
We will discuss strategies to overcome this issue as well.

Introduction

X-ray microscopy is being applied to an increasing 
number of microstructural problems in materials science, 
biology, and other disciplines. X-ray crystallography has even 
been used to characterize the structure of one of the most 
important protein complexes of the H5N1 virus, the most 
common strain of bird flu, and this could be critical in 
obtaining a cure for the deadly disease [1]. As the quality of 
the X-ray beam is directly related to its focal spot size, it is 
imperative that the beam be focused to as small an area as 
possible. One way to focus the beam is with a setup known as 
the Kirkpatrick-Baez mirror configuration, where two mirrors 
are placed at glancing angles with respect to the beam. The 
mirrors are highly polished metallic surfaces, usually coated 
with platinum, and they are arranged orthogonally with 
respect to one another so as to successively focus the X-rays 
in the horizontal and vertical directions. A typical set-up of a 
Kirkpatrick-Baez mirror focusing system is shown in the 
diagram below. 

By tilting the mirrors in the x, y and z planes, the focal 
spot size of the X-ray beam can be varied. World-renowned 
research facilities have reported spot sizes of approximately a 
micron in diameter. By properly adjusting the position of the 
mirrors, it has been shown that this value can be obtained for 
any similar set-up [2]. As such, the problem of minimizing a 
function of up to six variables, which is the maximum degree 
of freedom each mirror has, bears significant interest to us. 
Thus, this paper will investigate the various minimization 
techniques that can help achieve this goal. Of course, once 
suitable minimization approaches have been identified, 
strategies to modify these standard solutions to deal with the 
issue of noise within the response function, as well as that of 
the motors controlling the mirrors only being able to move in 
discrete steps, will be outlined. 

Figure 1. A typical set-up of a Kirkpatrick-Baez mirror 
focusing system [2]. Note the positions of the orthogonally 
arranged mirrors. (Picture courtesy of Bakulin)

Grid Search

Initially, we shall be considering functions of just one 
variable, since almost all problems can be understood most 
easily in this simplest case and also because some 
multivariable algorithms contain steps that require one-
dimensional minimization techniques. We shall begin our 
analysis of the various function minimization techniques with 
the simplest of them all – the grid search method. A grid 
search consists of choosing equally spaced points within the 
range of the single parameter to be evaluated, since we are 
dealing with one-dimensional problems. The function is 
evaluated at each of the chosen points, and the lowest value 
found is retained. If the spacing between the points is ∆x, 

then one of the points is sure to be within  of the true 

minimum, although technically speaking, it may not be the 



point corresponding to the lowest value. Nonetheless, if the 
function does not vary too much over distances in the order 
of ∆x, then one would assume that this method gives the 
minimum within a range of about ∆x [3].

 The grid search method is absolutely convergent and is 
stable to all sorts of functions. However, it is extremely 
inefficient. If the function does not vary too much over a 
distance of ∆x, then many of the function evaluations become 
unnecessary, especially those in regions where the function 
value is known to be large. In other words, the algorithm does 
not take into account what it has learnt about the function. 
The inefficiency of the grid search method is best illustrated 
with a numerical example. For instance, if a hundred points 
are chosen to evaluate each variable of a function, one that 
contains six variables would require 1012 points to resolve. As 
such, more efficient methods of optimization have to be 
investigated.

Golden Section Search

The one-dimensional approach to the golden section 
search starts with three points, x1, x2 and x3; where 
x1 < x3 < x2 and f(x3) < f(x1) and f(x2). The algorithm updates 
the points so that the middle point has a value that is less than 
that of the end points. Hence, based on the diagram below, 
one would try x4 to get x1 < x3 < x4. Subsequently, x5 would be 
chosen so that x3 < x5 < x4. Then, x6 would be chosen such 
that x3 < x6 < x5 and so on and so forth.  

Figure 2. The subsequent points are chosen so that the 
middle point is always smaller than that of the end points. 
(Picture courtesy of McGrew)

 This minimization technique gets its name from the fact 
that the subsequent points are always chosen 0.38197 into the 
larger segment, 0.38197 being the golden ratio. The algorithm 
is completely robust and its accuracy improves linearly with 
the number of function evaluations. In addition, even if the 
function is a smooth one, one would still be able to obtain the 
minimum of the function, albeit after many iterations. 

To counter this effect of requiring many evaluations, 
Brent’s method is used to supplement the golden section 
search. When used together, the golden section search and 
Brent’s method are perfect for minimizing one-dimensional 
functions. However, as we will see later, this combinational 
approach is ineffective when dealing with multivariable 
functions.

Brent’s Method

As mentioned earlier on, the golden section search 
technique is ineffective in dealing with smooth functions. 
Brent’s method was thus created to overcome this limitation. 
A caveat to take note of is that one has to actually know that 
the function is parabolic near the minimum before Brent’s 
method can be used. When this criterion is fulfilled, the 
algorithm converges very rapidly and is always able to find a 
minimum. 

Brent’s algorithm makes use of three points to determine a 
parabola. Once the pseudo-parabola has been defined, it is 
used to find a next point. Safety checks are created within the 
algorithm itself to prevent the parabola from oscillating 
between two wrong points. This method ensures that a 
minimum can always be found for functions that are 
parabolic near the minimum. However, because the algorithm 
requires such specific conditions for it to work, it is not as 
robust as other search techniques, in particular the grid search 
method. Nonetheless, it is useful to be able to call upon it 
when the golden section search technique fails. When used 
together, the golden section search and Brent’s method are 
able to minimize virtually every one-dimensional function. 
Unfortunately, this approach is not very useful when dealing 
with multivariable functions, as far too many evaluations are 
required for both search algorithms.

Figure 3. Brent’s method chooses the subsequent points by 
creating a pseudo-parabola that passes through three points of 
the original function. (Picture courtesy of McGrew)



Stepping Methods in Many Variables

It is a general rule in function minimization that one 
should not expect good one-dimensional techniques to be 
effective when extended to higher dimensionality. This is best 
illustrated by the increase in complexity when applying the 
grid search approach to multivariable functions. Nonetheless, 
it is natural for us to try to minimize each variable separately, 
one after the other. In doing so, we are effectively applying 
one-dimensional function minimization techniques to each of 
the variables of a multidimensional function. An example of 
such an approach would be the single-parameter variation 
technique, discussed in greater detail below. As we will soon 
see, such a method is ineffective in dealing with 
multidimensional functions, as the minimum of a particular 
variable may not be found at the minimum of another 
variable.

Single-Parameter Variation

Since the criteria for obtaining a minimum is finding a 
stationary point, we want to try to make each variable’s 
derivative vanish. The single-parameter variation approach 
does this in a sequential manner, making each derivative 
disappear one after the other. Hence, one would seek a 
minimum for each variable using one of the techniques 
described earlier on. However, an obvious flaw with this 
approach is that when one has finished minimizing with 
respect to xi+1, xi or earlier variables may no longer be at a 
minimum, so one would generally have to start all over again. 
Fortunately, the process does converge, although it may take 
a long time to do so for functions of many variables [4]. As 
such, this process is considered too inefficient to be applied to 
most multivariable functions, and for that reason, we will not 
be considering it in our implementation.

Simplex Method

To avoid the problem that we faced with the single-
parameter variation technique, it might be worthwhile trying 
to minimize all the variables at once, instead of minimizing 
one variable at a time. The simplex method is one instance of 
such an approach. A simplex is a geometric solid in n-
dimensions, with n + 1 vertices. Hence, a simplex in two 
dimensions would be a triangle, while a simplex in three 
dimensions would be a tetrahedron. The method gets its name 
from the way the algorithm is carried out. An initial simplex, 
consisting of n + 1 points, with n being the number of 
variables in the function to be minimized, is chosen at 
random. The highest vertex is reflected across the other 
surface and the process is repeated until the highest point is 
not decreased. Subsequently, the simplex is shrunk and the 
highest point is reflected across the other surface again. As 
such, the minimization algorithm can be thought of as 
crawling along the function, much like an amoeba would. In 
fact, some refer to the simplex method as the amoeba 

technique for this very reason [5]. The figure below best 
demonstrates this procedure.

There are several benefits to the simplex procedure. Not 
only is it very easy to implement, one also does not have to 
assume that the function is smooth for the algorithm is able to 
handle discontinuous functions with ease. Furthermore, it is 
easy on the part of the programmer to visualize what is 
happening, as the function is not minimized along any 
particular direction. Instead, as mentioned before, the 
function is minimized vertex by vertex. 

Of course, as with all algorithms, there are some 
limitations as to what the simplex method can accomplish. 
The simplex technique is not as efficient as other high order 
routines, which we will discuss later on. Not only does the 
simplex algorithm require more function evaluations, its 
precision does not increase very quickly. To further 
compound matters, the simplex method has a tendency to be 
tricked by long flat valleys, and the solution obtained would 
often be far off from the intended target. The simplex 
technique is also not very good at dealing with narrow valleys 
as it takes many evaluations to reach the bottom of the valley, 
where the solution often lies [6]. Nonetheless, the advantages 
of the simplex procedure far outweigh its deficiencies. Hence, 
the simplex method is extremely popular as an optimization 
tool and we will be incorporating this towards the alignment 
of the Kirkpatrick-Baez mirror configuration.

Figure 4. This figure illustrates the simplex procedure. In (a), 
an initial simplex is picked randomly. Then, the highest 
vertex is reflected across the other surface as seen in (b). The 
process is repeated until the highest point is not decreased as 
illustrated by (c). Finally, in (d), the simplex is shrunk in 
preparation for the next series of minimization. (Picture 
courtesy of McGrew)

Steepest Descent

After extolling the benefits of minimizing multivariable 
functions in its entirety, we return back to our original 
approach of minimizing a function one variable at a time, 



albeit with some modifications to the method. Instead of 
merely tackling the function, more information about the 
function is used in the solving algorithm. In particular, 
gradient methods make use of the first derivative of the 
function in their minimization algorithms. The method of 
steepest descent is but one instance of such an approach. It is 
considered a gradient method, as it uses derivatives to predict 
good trial points that are relatively far away. Do note that this 
does not necessarily mean that the algorithm is following the 
gradient, but only that the gradient is used to find the next 
point in the minimization routine. In essence, the steepest 
descent approach consists of a series of one-dimensional 
minimizations, each one along the direction of the local 
steepest descent, which is the gradient at the point where each 
new search begins. Naturally, the direction of the gradient 
would not be constant along a line, even for general quadratic 
functions, so we would expect many iterative steps to be 
necessary. Still, the method almost certainly guarantees 
convergence for quadratic functions, which explains its 
popularity as a minimization technique.

Since the algorithm involves minimization along each axis 
in turn, it is apparent that the method requires an auxiliary 
linear minimization approach. However, according to 
Murphy’s Law of Minimization, function valleys never lie 
along a primary direction [7]. A method is thus needed to help 
determine a better direction for minimization. As a result, the 
conjugate gradient direction search was created with this very 
purpose in mind.

Figure 5. A pictorial representation of the search algorithm 
used in the steepest descent method. Here, we are dealing 
with two dimensions, so this gives us steps that look just like 
the single parameter variation method with the axes rotated in 
such a way that they line up with the gradient at the start 
point. An unfortunate limitation of this approach is clearly 
illustrated here: if each linear minimization is exact, then 
successive searches must be in orthogonal directions. (Picture 
courtesy of McGrew) 

Conjugate Gradient Direction Search

In the method of conjugate gradients, successive one-
dimensional minimizations are performed along conjugate 
directions with each direction being used only once per 
iteration. This elegant approach allows the algorithm to 
converge in as little as two iterations when dealing with 
quadratic functions. It is also very effective in handling long 
straight valleys, a condition that the steepest descent method 
was unable to cope with [8]. Let us briefly explore how the 
algorithm achieves this. Suppose that the function and its 
gradient can be evaluated at two different points, and  
This would give us the following differences, namely:
∆  =  and ∆     where is the gradient at 
each point, i being either 0 or 1. Then, if the function were 
quadratic with hessian matrix , we would obtain ∆  . 
Any vector  orthogonal to ∆  would then be conjugate with 
respect to . This can be expressed as:

,
which implies that there must be a method for obtaining 
conjugate directions without prior knowledge of . This 
technique would of course be based on the change in gradient 
along a previous direction, which is exactly what the 
conjugate gradient direction search method does [9].

As mentioned earlier, the conjugate gradient technique 
utilizes successive one-dimensional minimizations. Unlike 
the method of steepest descent, the minimizations are 
performed along conjugate directions rather than along each 
axis. This difference is what allows the conjugate gradient 
method to follow long straight valleys. The first step of the 
algorithm involves choosing an initial direction, . It is 
taken as , where  is the steepest descent vector 
at . Next, we let the minimum along this direction be at  
where the gradient is . Then, the next search direction , 
which we want to be conjugate to , must be a linear 
combination of the only two vectors we have at hand:

,
where b is an arbitrary constant. 
The conjugacy condition is:

 , 
or

 + b  .
Since  is a minimum along the direction as , the 
direction  is orthogonal to the gradient at , so that 

. We are then left with:

 

so that the new conjugate direction is

.



This process is repeated to generate n directions, each one 
conjugate to all the others. This simple formula holds for all 
the successive conjugate directions, so that:

.

The conjugate gradient direction search method is much 
more robust than the steepest descent approach and is a very 
useful tool for optimizing functions. However, twisting 
valleys can cause the conjugate directions being generated to 
become degenerate. Also, implementing the algorithm is a 
challenge in itself due to its complexity. Nonetheless, the pros 
far outweigh the cons and thus, we will be incorporating this 
towards the alignment of the Kirkpatrick-Baez mirror 
focusing system.

Implementation towards Alignment of 
Kirkpatrick-Baez Mirrors

Based on the various optimization techniques outlined 
above, a suitable program incorporating the best elements of 
each method needs to be developed. However, as we have 
seen, no one method can be optimum in the sense that it can 
be used on all functions. In addition, even for a given 
function, it is highly unlikely to find a method that works 
well in all regions, far from the minimum as well as near to it. 
As such, we will attempt to tailor the program to the 
function’s needs. A decision tree enabling the user to choose a 
method for his function has been suggested by Fletcher [10]. 
While this is indeed ingenious, the user has to have some 
prior knowledge of the function, a luxury one does not have 
when attempting to align Kirkpatrick-Baez mirrors. 

Therefore, we have decided to instead incorporate the 
golden-section search, Brent’s method, the simplex method 
and the conjugate gradient direction search algorithm into a 
general program of sorts. The rationale for doing so is 
because of the inherent advantages each approach brings to 
the table. When used together, both the golden-section search 
and Brent’s method are able to handle almost any one-
dimensional function. The simplex method, together with the 
conjugate gradient search technique, can handle most 
multivariable functions. However, both of these multivariable 
optimization techniques require an auxiliary linear 
minimization routine, which is exactly what the golden-
section search and Brent’s method are providing. Hence, if all 
four routines are used simultaneously, then it is highly likely 
that they would be able to give a good solution pertaining to 
the optimum alignment of the mirrors.

When implementing the program, one also has to consider 
the fact that the movement of mirror is being controlled by 
three sets of motors. As each motor can only move in discrete 
steps, the solution obtained from the program may not be 
implementable. This is a consideration that the programmer 
has to account for when creating the algorithm. Furthermore, 

as mentioned earlier on, we will have to contend with the 
issue of noise within the function itself. The optimization 
algorithm will thus have to be robust enough to handle any 
noise in the function values.

Results

 It turns out that the program, containing the four 
optimization techniques, that was described in the previous 
section is able to handle some noise within functions very 
well. For the case of the alignment of the Kirkpatrick-Baez 
mirrors, the program is able to give us good solutions, while 
taking into account the fact that the motors controlling the 
mirrors can only move in discrete step sizes. However, the 
program is unable to handle anything more complicated than 
parabolas with noise. As one is unable to tell what sorts of 
functions the alignment of the mirrors can churn up, much 
less what sort of noise may be produced within the function, 
it is obvious that more work needs to be done in this field. 
Still, for the most part, the program appears to work well in 
that acceptable solutions, close to the minimum, can be 
obtained for well-behaved parabolic functions. 

Conclusions

In summary, various methods for optimizing one-
dimensional and multi-dimensional functions have been 
presented. These techniques have been applied to the problem 
of aligning a Kirkpatrick-Baez mirror focusing system, an 
issue that can be thought of as minimizing a function of up to 
six variables, the maximum degree of freedom that the 
motors which control the mirrors can move in. As the motors 
can only move in discrete steps, the minimization methods 
that were described had to be modified as they could only 
solve standard functions without any noise in them. In 
addition, the function describing the mirror configuration is 
subjected to noise. Thus, any algorithm hoping to obtain the 
optimum alignment of the mirrors had to account for this as 
well. A strategy to cope with these two issues was outlined, 
and a program able to handle noise in parabolic functions, 
while taking into account the discrete step size consideration, 
was presented.
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